
Challenges in Large Scale Distributed Computing: Bioinformatics

Terry Disz, Mike Kubal, Robert Olson, Ross Overbeek, Rick Stevens
Argonne National Laboratory

The University of Chicago
The Fellowship For the Interpretation of Genomes

disz@mcs.anl.gov, olson@mcs.anl.gov, mkubal@mcs.anl.gov, ross@thefig.info,
stevens@mcs.anl.gov

Abstract

The amount of genomic data available for study is increasing [1] at a rate similar to that of Moore’s Law [2].
This deluge of data is challenging bioinformaticians to develop newer, faster and better algorithms for analysis and
examination of this data. The growing availability of large scale computing grids coupled with high-performance
networking [3] is challenging computer scientists to develop better, faster methods of exploiting parallelism in these
biological computations and deploying them across computing grids.

In this paper, we describe two computations that are required to be run frequently and which require large

amounts of computing resource to complete in a reasonable time. The data for these computations are very large
and the sequential computational time can exceed thousands of hours. We show the importance and relevance of
these computations, the nature of the data and parallelism and we show how we are meeting the challenge of
efficiently distributing and managing these computations in the SEED [4] project.

mailto:mkubal@mcs.anl.gov
mailto:ross@thefig.info

1. Problems in Modern Bioinformatics

1.1. Protein Structure
In Texas, folks put a lot of thought and effort

into making good chili. So to win the “Annual Texas
Chili Cook-Off” and the $10,000 prize money is no
small feat. One needs the right recipe, choicest
ingredients, and proper cooking equipment. A few
years back however, a guy won and he didn’t possess
any of those things. One of the pleasures of attending
the Texas Chili Cook-Off is sampling all the
contestants’ efforts. This fellow visited each booth
for a sample, but instead of savoring it, he saved it.
And when he got back to his booth with his samples,
he dumped them into his empty pot. It was not until
he had been declared the winner that anyone realized
he didn’t have any cooking equipment other than his
one pot.

In the world of bioinformatics, a lot of folks are
going to painstaking efforts to “make good chili”, and
we should all be grateful to them. But sometimes, we
get the best results by integrating the output from
several of these efforts. The SCOPmap[5] program
takes this approach. SCOPmap applies several
sequence and structure comparison tools to a query
protein and combines the results to find homologs,
sometimes remote homologs, already in the
SCOPmap database, and thus determine the structural
classification of the protein and possible evolutionary
links between families of proteins. The four sequence
comparison tools used, listed in increasing order of
sensitivity of remote homologs are BLAST[6], RPS-
BLAST, PSI-BLAST[7], and COMPASS[8]. The
structure comparison tools used are MAMMOTH[9]
and DaliLite[10].

Since remote homologs can have similar amino
acid residue conservation patterns, but lack overall
sequence similarity SCOPmap contains two
additional programs that look to identify remote
homologs by conservation analysis which requires
the output from both the structural and sequence
comparison tools. SCOPmap was able to make the
correct structural classifications for 81.6% of the
non-trivial, those not able to be detected by gapped
BLAST, protein domains tested.

Possessing the structural classifications for as
many of the proteins in our database as possible will
be a valuable resource in our efforts to accurately
annotate protein functions. In addition to helping find
proteins that may perform the same function as our
query protein, despite a low degree of overall
sequence similarity, the structural information will
help us disambiguate protein families into more
discrete sets. Having more well-defined protein

families will lead to better annotations with other
annotation tools and approaches. Even after the
function of a protein is determined, the structural
classifications will aid researchers in determining
how the protein actually performs its job.

The compute resources for any one of sequence

or structure applications can be significant when
applied to a large number of proteins, integrating
them all together can make waiting for the results a
project for three generations of bioinformaticians.
Running SCOPmap on one of our machines
(Macintosh G5) for just one protein out of the million
in our database takes about an hour. To run
SCOPmap for all of our proteins would take
approximately 100 years on our single machine.

The good news is that the project of finding the
SCOP classification for each protein in our database
can be broken down into independent parallel jobs
suitable for solving on a large computational grid.

1.2. Sequence Similarities
Recent analysis by Gordon Pusch of Fellowship

for the Interpretation of Genomes forecasts that the
1000th microbial genome will become available
sometime in 2008. For the field of comparative
genome analysis this prospect is both daunting and
mouth-watering. Since many similar genes, protein
functions, cellular processes and structures are
conserved across diverse sets of organisms, the
greater the number of genomes included in the
analysis, the more genes with previously unknown
functions can be assigned a potential function. The
number of similarities detected increases
proportionally to the square of the number of
genomes used [11]. According to a recent statistical
model, we have not yet begun to “exhaust the power
of comparative genome analysis,” and a significant
amount of the protein sequence space still needs to be
explored [12]. The benefits of possessing the
similarities for as many genes as possible are not
limited to determining the function of genes that are
similar to others. Functionally related genes (genes
that participate in the same process) often are
clustered together in the DNA. In organism A, 3 out
of 4 genes in a cluster may have similarities to a
cluster of genes in organism B. The gene in organism
A with no similarity to anything else has an unknown
function. By comparing the genomic context
(adjacency of genes, direction of transcription, fusion
of two genes in one organism to one gene in another
organism) of the gene clusters in organism A and
organism B, it may be possible to map the function of

a gene in organism B to a gene in a cluster with no
sequence similarity in organism A.

With all the benefits of similarities, it is no
wonder that after each new genome is sequenced and
has its genes called, the first thing everyone wants to
know is how similar is every gene in this new
genome to every gene in every other genome in the
database, and how similar every gene in every
organism in the database is to every gene in this new
genome. In the SEED, an open-source framework for
comparative analysis and genome annotation, the
current set of similarities just described is about GB
in size.

1.3. Characteristics of the problems

1.3.1. SCOPmap

The SCOPmap calculation, while itself rather
complex, appears to the user as a simple shell script
invocation. It takes as input a PDB file [13]
containing the sequence data for the gene we are
considering, and generates a file containing the
structural classification information. The data transfer
requirements for this are hence minimal, but the
SCOPmap installation with its component databases
is rather large, around seven gigabytes, and requires
careful installation. An individual invocation of the
SCOPmap program can take anywhere from a few
minutes to many hours. In following figures we see a
scatter plot and histogram relating the size of the
input sequence (here, from genes in Escherichia coli
K12) to the observed runtime. The majority of the
runs are within a few hours of runtime, but there are a
number of outliers requiring significantly long
runtimes (see the following for a histogram of the
runtime data); these outliers become significant when
we consider approaches for monitoring long-term job
execution.

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

C
ou

nt

Runtime (hour)

SCOPmap: Runtime Histogram

"d.hist" using ($1/3600):($2)

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
un

tim
e

(h
ou

rs
)

Protein Size

SCOPmap: Protein size vs runtime

"d" using ($3):($2 / 3600)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5000 10000 15000 20000 25000 30000 35000 40000

Ti
m

e
pe

r c
ha

ra
ct

er
 (m

s)

Sequence Size (character)

BLAST: Sequence size vs. Per-char rate

"/tmp/dat.14596" using ($1):($2)

1.3.2. Similarity Computations

The similarity computation is likewise simple to
execute. Given a database of known sequence data
(which has generally been curated to remove
redundant sequences, retaining only the longest
sequence containing zero or more shorter sequences
which are suffixes of this longest sequence. We call
this longest sequence the principal synonym for it and
its suffixes. Our nonredundant database, or NR,
contains just the principal synonyms. For a set of
sequences on which we wish to compute similarities
to sequences in the NR, we need only invoke the
BLAST [6] application with the correct parameters.
Due to the sheer volume of sequence data, this can be
a hugely time-consuming task. Unlike the SCOPmap
computation, the expected runtimes for the similarity
computation can be fairly accurately predicted. On
modern cluster nodes, we have measured BLAST
runtimes of around 180 milliseconds per character of
input sequence when comparing to a NR containing
around 2.5 million sequences. This means that an
initial computation of similarities of all 2.5 million
sequences against each other could take nearly five
years on a single processor.

2. Problem Solving Approach
The larger problem we now face is overcoming

the challenges in attempting to solve a large
SCOPmap or similarity calculation on a large
computational grid.

These bioinformatics jobs can be viewed as
many related but distinct computations. Related in
that they use the same base data sets and the same
code and that the output from them is collected
together into a unit. Distinct in that each computation
can proceed independent of any other computation
(although there are optimizations to be had with the
use of the common data sets). Some jobs can require
tens of thousands of individual computations, the
serial computation of which could take thousands of
hours. While the time per computation is similar
throughout the job, there are some significant
exceptions as noted in the SCOPmap discussion.

Ideally, we would be able to send these jobs into
a grid-based scheduler and have that scheduler work
with the resource managers at each cluster to dispatch
the individual computations as efficiently as possible,
something along the lines of a Community Scheduler
[14]. While there are proposals and experiments with
such a facility [15], in general we are far from being
able to do that on the clusters we are able to access.

Typically, the scheduler interface at the clusters
we use is a variant of, or similar to the Portable
Batch System [16], first developed in 1994 at NASA.
This system is primarily a resource manager – it
matches user resource requests against available
resources and policy for an individual cluster and
queues jobs accordingly. A resource request is
basically the number of nodes required and for how
long. The types of jobs usually run on these clusters
are much smaller than what we are interested in; the
2004 mean for all jobs on our Jazz cluster was 10
nodes and 2.94 hours per request.

.Several thousand jobs launched into a traditional
batch scheduler will overrun the available resources
ending in job failure. In addition, the sheer number of
computations we must perform for a given job
require that we schedule computations across
multiple clusters. Therefore, the lack of a grid based
scheduler across our target clusters requires that we
develop our own methods for workflow management,
job management and submission.

The usual job scheduling on these clusters is
“push” based, i.e., the scheduler acts as a master
controller, queuing and dispatching work to compute
resources. The underlying model is of a job
consisting of a closely related set of computations
that start and finish together. If any one of the
processes for a job fails, the entire job is considered
to have failed. The user asks for more time than is

needed to avoid termination of the job before
completion. While the user is only billed for the time
actually used, one can’t help but regret the loss of the
remainder of the available time if the user had more
work to be done.

Our computations don’t follow this model; in
fact, it would be quite costly to lose progress on all
computations if any one of them failed. When a
computation is completed, there is almost always
more work that could be done in the remainder of the
allocated time, if only one could get somehow obtain
the unit of work.

 Because of these job differences and the
complexity in having a central scheduler maintain job
and resource state across multiple clusters and the
difficulty of trying to launch tens of thousands of
computations in this manner, we choose to
implement a simpler and more efficient model that is
more in keeping with our requirements.

Self scheduling tasks have been the subject of
research and writings for many years[17] and more
recently utilized in bioinformatics computations[18] .
The idea is to have computational processes ask for
work from a “pool of work” when they are ready,
rather than having the master scheduler ascertain
their readiness state and then push work out to them.
This simplifies the task of the owner of the work to
one of only maintaining the state of the work to be
done and not the state of the computational resources.

When we schedule a job onto a cluster, we are
scheduling a “worker”, that works independent of
any other workers on the cluster. Each worker is
given the address of a server we call an “AskFor”
[17] server which dispenses units of work upon
request from a worker. A worker stays active over the
entire allocated time, continually asking for and
processing work, making better utilization of
allocated time. Since a worker will not quit before
the allocated time has run out, it is invariable that
some work will not be completed. The server keeps
track of work and will reschedule uncompleted work.
If the size of allocated time to time per task is
sufficiently large, this overhead is an acceptable price
to pay for the higher utilization we get of our
allocated time.

2.1. Resources
The resources that we are primarily targeting to

solve these problems are loosely coupled clusters of
computers. Since the computations are entirely
independent of each other once dispatched, we do not
rely upon the existence of a fast interconnect between
the nodes in a cluster (apart from its effect on shared
file system performance, which we will discuss later).

The first of our two primary resources is the Jazz
cluster at the Laboratory Computing Resource Center
[19] at Argonne National Laboratory. Jazz comprises
350 compute nodes, each with a 2.4 GHz Intel Xeon
processor. Half the nodes have 2GB RAM, half have
1GB RAM. The cluster has 10TB of shared disk
served as Global File System (GFS) [20] volumes,
with another 10TB shared as Parallel Virtual File
system (PVFS) [21]volumes.

The heavy lifting in our computations is
provided by the second of our resources, the
TeraGrid [3] [22] distributed cluster. The TeraGrid is
a large distributed cluster spread over nine sites
across the United States interconnected via a 40
gigabit per second network. For the purposes of our
work, we consider each of the TeraGrid sites as a
different cluster; the integration of them into an
overall distributed cluster does not affect the
technology used in the application.

The TeraGrid cluster located at Argonne
National Laboratory is typical of the TeraGrid sites.
It comprises 62 nodes with dual 1.3 GHz Intel
Itanium 2 (IA64) processors and 4GB RAM, and 96
nodes with dual Intel Xeon 2.4GHz processors and
4GB RAM. The cluster has 15 TB General Parallel
File system (GPFS) shared disk, and 5 TB PVFS
shared disk. For the experiments described here, we
only used the IA64 nodes.

2.2. Our implementation
Our implementation directly models the pool-of-

work abstraction. Each job is divided into a number
of explicitly defined, independent work units. A
central broker, the AskFor [17] server, manages the
dispatching of these work units to workers; monitors
and updates a record of the state of the work units;
and handles the collection of output data upon
completion of work units.

We have built three distinct systems
implementing this model as we gained experience
with it in real-life operation.

The first version (MultiBlast) is dedicated to the
large-scale computation of protein sequence
similarities via the BLAST sequence comparison tool.
It implements a simple self-scheduling worker
infrastructure. The manager is a persistent server
implemented in the Python scripting language. It
maintains the work unit state in memory, writing
snapshots of that state to disk for use in later restarts
of the manager. The worker programs are each
implemented in Python, and maintain a persistent
TCP connection to the server for use in obtaining
new work units and in writing results back to the
server. The workers use the blastall program to
compute similarities between the input sequences as

distributed by the manager and a nonredundant
database that was manually configured.

The second system is dedicated to the SCOPmap
computation. The worker/manager communication no
longer relies upon persistent TCP connections, but
rather uses XMLRPC messages directed from the
workers to the manager. The entire infrastructure is
asynchronous: the manager state is no longer kept in
memory, but rather in tables in a relational database.
The manager itself is not a persistent program, but
implemented as a set of XMLRPC message handlers
hosted by an Apache web server that act upon the
state kept in the database.

Each request from a worker is of the form
get_work(job_name, worker_id). The manager
maintains multiple distinct jobs; each worker picks
the job from which it wishes to obtain work. The
worker identifier passed to the manager is used to
match the results for a particular piece of work to the
worker responsible for its computation.

The third system is intended to be a more
general-purpose tool, suitable at the least for both the
BLAST and SCOPmap computations. It is also
constructed to use web service messaging between
workers and the manager (via SOAP instead of
XMLPRC in this case). The manager again maintains
state in a relational database, and is hosted in an
Apache web server. The database schema is
considerably more complex than that used in the
SCOPmap system, largely due to the support for file
staging.

3. Challenges

3.1. File Staging and Cluster Optimizations
One of the obstacles to the use of the

MultiBLAST system as originally built is the
requirement that the search database be manually
installed on each cluster that is to participate in the
computation. We address this in the latest software
by incorporating the concept of cluster work. A
computational job can specify that there are pieces of
work that must be done once per cluster, and that this
work must be completed before noncluster work can
proceed. In the similarities computation, we define a
cluster work item for each job that causes the search
database to be downloaded to shared file system
space in the cluster, and the BLAST formatdb
indexing program to be invoked on it.

For such a mechanism to work, the manager
must know the cluster affiliation for each worker. We
currently require a manual registration of each cluster
with the manager, which results in the assignment of

a cluster identifier. When each worker starts running,
it registers with the manager, providing it with its
cluster identifier.

3.2. Network considerations
The manager/worker architecture clearly requires

a reliable network between the components. It must
have high enough bandwidth in order to allow the
downloads of any large database files required to
succeed in a reasonable amount of time, and be able
to sustain the large flow of connections from the
workers to the manager. Note, however, that the
system is resilient to transient failures of the network
since no persistent connections are required. If these
transient failures persist longer than the interval the
manager uses to time out inactive workers, however,
it is possible for completed work to be thrown away
by the manager because it comes from workers
declared out of commission. This can be solved by
analysis of failure patterns in the worker/manager
communications and by adjusting the dead-worker
timeout if necessary (concurrently with working with
the network administration staff to determine the
cause of failure of the network, of course).

The reliance on workers’ ability to connect to the
manager also requires one to consider the effect of
firewalls or other network security measures. Clearly,
the manager must be accessible to the worker hosts;
either by being located outside any firewalls or by
having conduits to it installed in any firewall between
the manager and the workers. The design of the
system does not require individual workers to be
open to incoming connections; all communication is
initiated by workers. We have encountered large
clusters in the TeraGrid system that block outgoing
access from compute nodes; we are currently
working with the site administrators to solve this
problem.

3.3. Managing complexity
Conceptually, each of the distributed

computation management systems is quite simple. A
manager maintains state of work units, and workers
are delivered work upon request, compute the results
for that work, and return the results.

In operation, however, the simplicity vanishes in
a snowstorm of details. We will discuss the
challenges that we faced with each system, and how
their resolution led to succeeding design choices.

The first MultiBLAST system has on the whole
been quite reliable; we have used it for production
similarity computation in support of the SEED[4]

genome annotation system since 2003. The primary
limitation that it has is that its use is largely manual:
the user is responsible for staging the nonredundant
(NR) database onto each cluster that participates in
the computation and must ensure that the invocation
of the worker programs on the cluster have the
correct path to the NR database.

The use of the persistent worker/manager TCP
connections is also a potential source of trouble. In a
very large computation, it is possible that resource
limits may be exceeded on the server, in terms of the
number of active connections supported by the
operating system. In addition, if a connection is
disrupted for any reason (perhaps a glitch in a wide
area network), the client will interpret that disruption
as a signal to exit.

The persistent connection does however provide
a key advantage: the manager can know immediately
if a worker has terminated for some reason and that
the work unit the worker was processing has to be
returned to the pool of available work. Without this
immediate feedback, the manager must rely upon
periodic updates from the workers to determine when
a worker has terminated unexpected. Note that even
with the persistent connections, it is possible for a
worker to hang in a way that the connection is not
dropped: for complete reliability, the manager must
have a mechanism to determine the state of workers.

The SCOPmap computation system was built
without such a mechanism under the assumption that
for the limited scope of the problem being addressed
that it would not be an important issue. In practice,
however, it turned out that some of the pieces of
work took upwards of 20 hours to execute (the
standard timeslot we used in requesting node time
from the system schedulers). Without manually
logging into the compute nodes and checking the
system load, it was impossible to tell if a client was
dead, hung, or processing a very long computation.

We have addressed this issue in the new system
by introducing worker heartbeats. Each time any web
service method is invoked on behalf of a worker, the
database record corresponding to that worker is
updated with the current timestamp. A “heartbeat”
method is also defined which has the sole effect of
updating the timestamp. While a long-running
computation is executing, the heartbeat method is
periodically invoked (currently, on a 5-minute basis).
Given this information, the manager can determine
which worker records correspond to workers that are
no longer active. If there are pieces of work which
are marked as currently being computed on these
workers they can be returned to the pool of available
work.

Even with the mechanism in place to detect
defunct workers, the worker code is designed to
detect failure wherever possible and proactively
notify the manager when a piece of work must be
aborted. To this end, the worker code carefully
manages signal handling, detecting the occurrence of
fatal signals and invoking the work failed web
service method for the current piece of work. In order
to maintain as much order as possible, signals are
masked during the execution of the web service
interactions with the manager; any signals that arrive
during the masked time are deferred by the
application until the point at which signals are re-
enabled.

3.4. Server scaling issues
We need this distributed computation

infrastructure to support very large computations. For
instance, a computation being used in the
development of a major SEED release requires the
computation of pair wise similarities between
roughly 2.4 million sequences. Using a conservative
estimate of 180 milliseconds per character of input
sequence (this estimate derives from observing a
large number of executions of work units from this
computation), a sequential execution of the problem
would take roughly 4.8 years. With the resources we
appear to be able to realistically obtain on the
combination of the Jazz and TeraGrid clusters, we
should be able to complete this computation in under
two weeks.

Doing so, however, requires managing a large
number of individual work units. In order to strike a
balance between managing scheduling and process
startup overhead (which argues for large pieces of
work), and the real-life limitations of working with
production batch scheduling systems where one
cannot assume infinitely long job execution (which
argues for small pieces of work), we are currently
dividing the work into roughly 20,000 character
blocks, which translates to around 30-60 sequences
per work unit, taking roughly 30-90 minutes to
execute, depending on the actual size of the work unit
and the capability of the node in use. Thus, the
manager has to keep track of the current state of over
42,000 individual pieces of work, the input sequence
corresponding to that data, and the output similarities.

We have not attempted to be overly clever in this
system, and apply brute force methods to the solution.
We use a well-connected Linux server as the
manager. It is a powerful machine, with four Intel
Xeon 2.8GHz processors and 4GB of RAM. The
database is hosted in a Postgres sql database server
configured with a large number of shared buffers
available. In order to avoid any database table

consistency problems, we completely sequentialize
all access to the database via a POSIX semaphore in
the SOAP service code. This has the effect of
potentially increasing the latency of requests;
however, the attempts we made to portably use native
database transaction and locking methodologies have
not yet succeeded. In practice, our choice of work
unit size and the fact that there is typically little
contention for the database lock result in this not
being a significant problem.

4. Results and Future Work

We have implemented three different versions of
an AskFor-based manager-worker infrastructure. The
original MultiBLAST has been used for 18 months as
a production code in support of computing sequence
similarities for the SEED project. We regularly run
the MultiBLAST across the Jazz cluster at Argonne
and the University of Chicago Teragrid cluster, and
have consumed over 32,000 node-hours on the Jazz
cluster alone.

We have used the AskFor-based SCOPmap
computation engine to compute SCOPmap protein
structure information for E. Coli K12 on the Jazz and
UC Teragrid clusters. This computation took roughly
3.5 days on an aggregate of 196 nodes across the two
clusters. The corresponding serial computation would
have taken over 176 days.

We are in the process of computing a large
BLAST similarity run on a collection of clusters
including Jazz, Teragrid clusters at UC, SDSC and
NCSA, and the new Teraport cluster also at the
University of Chicago. This job comprises over
48,000 individual pieces of work, and is running
smoothly on the newest MultiBLAST infrastructure.

We believe the results of these three systems,
including production and experimental usage,
validate the AskFor model for use in high-volume
distributed computations.

In the future, we envision such as system to be
an efficient back-end processing engine for novel
interactive applications in computational biology and
bioinformatics. A centralized AskFor manager which
buffers a queue of work units for presentation to a
large-scale distributed computational engine is a
useful component in the decoupling of the
complexities of large distributed computers from the
smaller-scale, more serial in nature biology
applications. We envision a number of applications
of this technology, including

!" Allowing users to quickly compute
similarity values for private or newly-

sequenced genomic data for use in
annotation and other analysis.

!" Providing high-capacity processing access to
simple scripting language-based applications
through the use of web service interfaces to
the AskFor manager.

!" Powerful bioinformatics portals that expose
sophisticated analysis modules to users
without detailed knowledge of the
computing systems providing the back-end
processing.

5. Acknowledgements.
We gratefully acknowledge use of "Jazz," a 350-node
computing cluster operated by the Mathematics and
Computer Science Division at Argonne National
Laboratory as part of its Laboratory Computing
Resource Center.
This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S.
Department of Energy, under Contract W-31-109-
ENG-38.
The submitted manuscript has been created by the
University of Chicago as Operator of Argonne
National Laboratory ("Argonne") under Contract No.
W-31-109-ENG-38 with the U.S. Department of
Energy. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display
publicly, by or on behalf of the Government.

References:
1. Genbank.

2005http://www.ncbi.nih.gov/Genba
nk/genbankstats.html.

2. Apweiler, R., et al., Managing core
resources for genomics and
proteomics. Pharmacogenomics,
2003. 4(3): p. 343-50.

3. The TeraGrid Project.
2004www.teragrid.org.

4. Overbeek, R., Stevens, R., Disz, T.,
The SEED: A Peer to Peer
Environment for Genome Annotation.
CACM, 2004. 47(11): p. 46-50.

5. Cheek, S., et al., 4SCOPmap:
automated assignment of protein
structures to evolutionary
superfamilies. BMC Bioinformatics,
2004. 5(1): p. 197.

6. Altschul, S.F., et al., Basic local
alignment search tool. J Mol Biol,
1990. 215(3): p. 403-10.

7. Altschul, S.F., et al., Gapped BLAST
and PSI-BLAST: a new generation of
protein database search programs.
Nucleic Acids Res, 1997. 25(17): p.
3389-402.

8. Sadreyev R, G., N, COMPASS: a
tool for comparison of multiple
protein alignments with assessment
of statistical significance. J Mol Biol,
2003. 326: p. 317-336.

9. Ortiz AR, S.C., Olmea O,
MAMMOTH (matching molecular
model comparison obtained from
theory): an automated method for
model comparison. Protein Sci, 2002.
11: p. 2606-2621.

10. Holm L, S.C., Dali: a network tool
for protein structure comparison.
Trends Biochem Sci, 1995. 20: p. 478-
480.

11. Overbeek, R., et al., The use of gene
clusters to infer functional coupling.
Proc Natl Acad Sci U S A, 1999.
96(6): p. 2896-901.

12. Eddy, S., A Model of the Statistical
Power of Comparative Genome
Sequence Analysis. PLoS Biol, 2005.
3(1): p. e10.

13. Berman, H.M., et al., The Protein
Data Bank. Nucleic Acids Res, 2000.
28(1): p. 235-42.

14. Community Scheduler Framework.
2005http://sourceforge.net/projects/g
csf/.

15. Mausolf, J., Use Community
Scheduler Framework to implement
grid meta-schedulers.
2004http://www-

http://www.ncbi.nih.gov/Genbank/genbankstats.html
http://www.ncbi.nih.gov/Genbank/genbankstats.html
http://www.teragrid.org/
http://sourceforge.net/projects/gcsf/
http://sourceforge.net/projects/gcsf/
http://www-106.ibm.com/developerworks/grid/library/gr-meta.html

106.ibm.com/developerworks/grid/li
brary/gr-meta.html.

16. Koonin, E.V., Galperin, M.Y.,
SEQUENCE - EVOLUTION -
FUNCTION. Computational
Approaches in Comparative
Genomics. 2002, Boston: Kluwer
Academic Publishers. 488.

17. E. Lusk, R.O., et. al., Portable
Programs for Parallel Processors.
1987: Holt, Rinehart, and Winston.

18. A.J. Chakravarti, G.B., M. Lauria,
Self-Organizing Scheduling on the
Organic Grid. International Journal
on High-Performance Computing
Applications, 2005.

19. Overbeek, R., M. Fonstein, M.
D'Souza, G. D. Pusch, and N.

Maltsev, Use of contiguity on the
chromosome to predict functional
coupling. In Silico Biol, 1998. 2(1):
p. 93-108.

20. Osterman, A.O.R., Missing genes in
metabolic pathways: A comparative
genomics approach. Current Opin. Chem.
Biol., 2003. 7: p. 1-14.

21. Gaasterland, T., and Selkov, E.,
Reconstruction of metabolic
networks using incomplete
information. ISMB, 1995. 3: p. 127-
135.

22. Mervis, J., Advanced computing.
NSF launches teragrid for academic
research. Science, 2001, 2001.
293(5533): p. 1235-7.

http://www-106.ibm.com/developerworks/grid/library/gr-meta.html
http://www-106.ibm.com/developerworks/grid/library/gr-meta.html

